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Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these

positrons encodes valuable information about the runaway dynamics. The phase space dynamics of

a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry,

loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will

drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less

than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as

diagnostic tools. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882435]

Positron, the anti-particle of electron, is a rare species in

the part of universe where we reside. Since last century, man-

made positrons have been generated in accelerators for scien-

tific research, in nuclear reactors as the byproducts, and

applied in different fields, such as medicine and material

detection.1–3 Recent researches indicate that tokamak, a mag-

netic confinement fusion energy device, may be the largest ar-

tificial positron factory in the world.4,5 In large tokamaks like

JET and JT-60U, above 1014 positrons are generated in a

post-disruption plasma by runaway electrons.6–22 The dynam-

ics of these positrons after birth in tokamaks is a noteworthy

question that may yield valuable information about the run-

away dynamics and disruption process in tokamaks. What is

the fate of these positrons? Will they annihilate inside the

plasma or on the first wall of the vacuum chamber? Because

the annihilation probability dependents on the path and veloc-

ity, the fate of runaway positrons is determined by their phase

space trajectories, which are strongly affected by the loop

electric field, the helical magnetic field, and the collisional

and radiation effects. Incorporating all these factors, we study

the phase space dynamics of runaway positrons in tokamaks

and predict their final fate.

When relativistic runaway electrons interact with the

thermal electrons and ions, positrons are produced in the pair

production process. In tokamaks, because the energy of run-

away electrons is typically above 10 MeV, most of their

“children” positrons are born relativistic and can be acceler-

ated to runaway velocity by the loop voltage. In the toroidal

direction, the runaway positrons are accelerated along the to-

roidal electric field and slowed down by radiation loss and

collisions. As the energy increases, strong synchrotron radia-

tion and bremsstrahlung radiation begin to dominate in the

drag force, which finally balances the loop electric field

force. The collisional drag from the background plasma

becomes small after runaway positrons gain high velocities.

Nevertheless, the collisional effect offers a momentum trans-

fer mechanism between the parallel and the perpendicular

momentum through the pitch-angle scattering. On the other

hand, the projection of the positron gyrocenter trajectory

onto the poloidal plane is not exactly located on a flux sur-

face due to the geometric effect of the tokamak magnetic

field. Numerical results reveal that the circular orbits of run-

way positrons in the poloidal plane drift toward or against

the major radius direction êR (see Fig. 1), under the influence

of the loop electric field along the toroidal direction n̂ and

the helical background magnetic field. Due to the drift effect,

the runaway positrons hit the first wall of the tokamak within

about one hundred milliseconds with energy as large as

150 MeV. After the phase space trajectories are known, the

annihilation probabilities along the trajectories can be calcu-

lated. For a typical positron, it is found that the probability

of annihilation inside the plasma is only about 0.1%.

Essentially all positrons generated in the tokamak will anni-

hilate on the first wall of the vacuum chamber. This fact sug-

gests that the annihilation spectrum from the wall can be

analyzed to infer the dynamics and distribution of the run-

away positions. Admittedly, there are many other loss mech-

anisms for the positions. For example, stochastic field

lines23,24 induced by MHD modes and ripple field25 can

result in transport or orbit loss for energetic positrons. The

orbit loss considered in the present study is a neoclassical

effect due to the toroidal geometry, and is probably the slow-

est loss mechanism among all possible mechanisms. The

FIG. 1. The circular concentric magnetic flux surfaces and the coordinate

systems.a)Electronic address: hongqin@ustc.edu.cn
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in-plasma annihilation probability of 0.1% obtained in our

calculation is thus its upper bound.

We now present in detail the study of phase space dy-

namics of runaway positrons. For theoretical analysis and

numerical simulation, the gyrocenter of runaway positrons is

described by a Lagrangian, which incorporates the tokamak

geometry, loop voltage, radiation and collisional effects.

Parallel momentum, perpendicular momentum, annihilation

rate, and the drift orbit in the poloidal plane are numerically

calculated as functions of time. The potential of runaway

positrons as a diagnostic tool is discussed at the end.

As the anti-particle, the positron has the same rest mass

as the electron, denoted as me, but opposite electric charge,

denoted as e. So the dynamics of runaway positrons are simi-

lar to that of runaway electrons. The Lorentz factor for a

positron with momentum p is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

m2
ec2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

p2
k

m2
ec2
þ p2

?
m2

ec2

s
; (1)

where c is the light speed in vacuum, pk is the momentum

component parallel to the background magnetic field, and p?
is the perpendicular momentum. Its synchrotron radiation

drag force takes the form

Fs ¼
2

3
remec2cðc2 � 1Þ3=2 1

R2
0

þ sin4h
r2

g

 !
; (2)

where re ¼ e2=4p�0mec2 is the classical positron radius,

rg¼ p?/eB is the positron gyro-radius, h is the pitch angle

defined by sin h ¼ p?=p, and R0 is the major radius of the

tokamak. The bremsstrahlung drag force is

FB ¼
4

137
nemecc2r2

e Zef f þ 1ð Þ ln2c� 1

3

� �
; (3)

where ne is the number density of the background plasma,

Zeff is the effective ion charge factor. The collisional friction

force is

Fc ¼
nee4melnK

4p�2
0

c2

p2
; (4)

where lnK is the Coulomb logarithm, which varies slowly

with the plasma parameters. From Eq. (4), the collision force

tends to nee4lnK
4p�2

0
mec2 as p ! 1. To theoretically investigate the

dynamics of runaway positrons in tokamaks, we describe the

dynamics of positrons by the following Lagrangian,26

L ¼ ðeA0 þ eAl þ eAeffk þ pjjbÞ � _x � cmc2: (5)

Here, A0 is the vector potential of the background magnetic

field satisfying B ¼ r� A0, Al is the vector potential of the

loop electric field satisfying

� @Al

@t
¼ Eloop ; (6)

Aeffk is the parallel component of the effective vector poten-

tial corresponding to the drag force,

Aeffk ¼
pk
p

t

e
Fs þ FB þ

Zef f þ cþ 1

c
Fc

� �
b ; (7)

and b is the unit vector along the magnetic field. The magni-

tude of the effective vector potential in the perpendicular

direction is

Aeff? ¼
p?
p

t

e
Fs þ FB þ 1�

p2
k

p2
?

Zef f þ 1

c

 !
Fc

" #
: (8)

Without loss of generality, we consider a tokamak mag-

netic field with circular concentric flux surfaces,

B ¼ B0R0

R
ên þ

B0r

qR
êh: (9)

Accordingly, we choose its vector potential to be

A0 ¼
B0R0z

2R
êR þ

B0r2

2Rq
ên þ

R0B0

2
ln

R

R0

� �
êz: (10)

The loop voltage is set to be

Eloop ¼ El
R0

R
ên: (11)

In the right-handed coordinate system (R, n, z) (see

Fig. 1), the Lagrangian takes the form

L ¼ pR
_R þ pn

_n þ pz _z � cmec2 ; (12)

where

pR ¼
eB0R0z

2R
� B0z

BqR
pk þ eAeffk
� �

; (13)

pn ¼
eB0r2

2q
þ eAlR0 þ

B0R0

B
pk þ eAeffk
� �

; (14)

pz ¼ �
eR0B0

2
ln

R

R0

� �
þ B0x

BqR
pk þ eAeffk
� �

: (15)

Because of the toroidal symmetry, i.e., @L/@n¼ 0, the effec-

tive toroidal momentum is conserved, i.e.,

pn ¼
@L

@ _n
¼ const: (16)

This invariance determines the evolution of pk as

pk ¼
B

B0R0

pn �
eB0r2

2q
� eAlR0

 !
� eAeffk: (17)

Meanwhile, there exits another conserved quantity, the effec-

tive magnetic moment l, defined by

l ¼ ðp? þ Aeff?Þ2

2meB
; (18)

which determines the evolution of p?. If neglecting the

higher-order terms caused by the toroidal effect and the

poloidal field, Eqs. (17) and (18) give
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dpk
dt
¼ eEloop �

pk
p

Fs þ FB þ
Zef f þ cþ 1

c
Fc

� �
;

dp?
dt
¼ � p?

p
Fs þ FB þ 1�

p2
k

p2
?

Zef f þ 1

c

 !
Fc

" #
;

which are consistent with the momentum evolution equa-

tions in Refs. 12 and 27–29. After substituting Eqs. (17) and

(18) into Eq. (12) and dropping the term pn
_n, the toroidal

symmetry leads to the reduced Lagrangian in the (R, z) 2D

space

L ¼ pRðR; zÞ _R þ pzðR; zÞ _z � HðR; zÞ: (19)

This is the procedure of Routh reduction. Then the runaway

positron dynamics in the 2D configuration space, i.e., the

projection poloidal plane, is given by the Euler-Lagrangian

equation,

_R ¼ @H=@z

@pR=@z� @pz=@R
; (20)

_z ¼ @H=@R

@pz=@R� @pR=@z
: (21)

Equations (17), (18), (20), and (21) determine the dynamics

of runway positrons in phase space. Given the dynamics in

the momentum space, the in-plasma annihilation probability

of a runaway positron can be calculated according to

Ran ¼
ðt
0

neranvds ; (22)

where the annihilation cross-section for the positron-electron

reaction is5

ran ¼
pr2

e

1þ c
c2 þ 4cþ 1

c2 � 1
lnðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
Þ � cþ 3ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � 1
p

" #

� 2p

137pð1� e�2p=137pÞ : (23)

To guarantee the long term numerical accuracy and fidel-

ity, we have adopted a variational symplectic integrator,30,31

which discretizes the Lagrangian directly, to carry out the nu-

merical simulation. For conventional integration algorithms,

such the Runge-Kutta method, numerical errors from different

time-steps accumulate coherently and the error grows without

bound for long-term simulations. In comparison, the varia-

tional symplectic integrator can globally bound the numerical

error for all time-steps, and thus are superior for simulating

the runaway dynamics, which often involves many hundreds

of thousands of turns in the poloidal plane.

For the present study, we use the parameters from EAST

as a specific example.32 We set B0¼ 3.5 T, R0¼ 1.7 m,

ne¼ 1019 m�3, and lnK ¼ 10. The loop electrical field is

El¼ 3 V/m, and the minor radius is a¼ 0.4 m. In typical

EAST operations, the safety factor q varies in the range of 1

to 3, while the profile of q is rather flat in the core region.

Thus we choose q¼ 2 in the calculation. For runaway posi-

trons with different initial parallel and perpendicular mo-

mentum, their momentum evolution is plotted in Fig. 2.

After 0.3 s, all the parallel momenta reach a steady value

around 300mec, as a result of the balance between the loop

electric field acceleration and the drag force resistance. The

perpendicular momenta also evolve towards a steady value,

though a little slower, due to the balance between the radia-

tion loss and the momentum transfer from parallel direction

through the pitch angle scattering. The green curves show

the dynamics of what might be called a “backward runaway”

positron,33,34 whose initial parallel momentum is opposite to

the loop electric field. It undergoes a deceleration under in

the toroidal direction at first. However, its parallel momen-

tum reverses sign after 0.01 s and then increases like forward

runaway positrons with positive parallel momenta. Its per-

pendicular momentum has a drop in the deceleration phase

and passes a point of inflexion at 0.01 s. It can be seen that

FIG. 2. The evolution of the parallel momentum (a), the perpendicular mo-

mentum (b), and the annihilation rate (c) of runaway positrons in tokamaks

with different initial values of (pk, p?) (normalized by mec). The loop elec-

tric field is El¼ 3 V/m.
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runaway positrons of widely different initial momentum

nonetheless approach attractor curves in momentum space.

The existence of attractor curves is made possible because of

the dissipation introduced by radiation effects.

The possibility of annihilation for runaway positrons with

different initial momenta is depicted in Fig. 2(c). Because the

annihilation cross-section becomes very large when the posi-

tron moves slowly relative to the background electrons, the

annihilation rate of the positron with negative parallel mo-

mentum grows rapidly during its turning around process.

Nevertheless, it escaped from the doom of annihilation for a

non-relativistic positron. Though its parallel momentum goes

through zero, its perpendicular momentum is still relativistic,

which ensures that it is not annihilated in the slowing-down

process and can be accelerated to runaway in the backward

direction. Overall, the annihilation probability is very low for

runaway positrons. The probability is only about 0.1% after

0.4 s, which is long enough for runaway positrons to escape

the tokamak plasmas through the drift motion or other trans-

port/loss mechanisms in the poloidal plane.

In essence, pitch angle scattering is a random process that

leads to the change of the perpendicular momentum distribu-

tion. The random aspect cannot be described by a deterministic

test particle description. It should be modelled by a Monte

Carlo method. For the present investigation, however, it turns

out that the fate of a runaway positron is mainly determined by

the outward drift motion and the annihilation rate, and the out-

ward drift depends only on the evolution of the parallel mo-

mentum. The collisional effect is included to model the

collisional drag force in the parallel direction. The direction of

the perpendicular momentum does not influence the evolution

of the runaway positrons. Furthermore, numerical results show

no significant differences in the evolution of drift motion and

positron annihilation rate even without considering the colli-

sional effect. This is because the collision frequency is small

compared with the runaway dynamics. The collision frequency

of the relativistic runaways is about 3 Hz for the typical param-

eters in a tokamak, which means that a runaway positron will

hit the first wall before undergoing a 90� pitch angle scattering.

For a very detailed description of the runaway dynamics, sto-

chastic differential equations and associated numerical meth-

ods can be applied to accurately model the pitch angle

scattering dynamics of the runaway particles. We are currently

planning to carry out research in this direction.

The motion of a runaway positron in the poloidal plane

with loop electric field El¼ 5 V/m is depicted in Fig. 3. The

loop electric field and the toroidal magnetic field are in the

ên direction, and the poloidal magnetic field is in the êh

direction. The counterclockwise circular orbits are snapshot-

ted for every 0.03 s. The outward drift of the circular orbit to

the êR direction is evident. The drift velocity slows down

with the radiation resistance in the toroidal direction

increases. The drift velocity can be roughly estimated as

vdr¼ q(ElþEeffk)/B0.13 The runaway positron finally hits the

wall before t¼ 0.15 s, with an in-plasma annihilation proba-

bility less than 0.1%. This example illustrates the fact that

most of the runaway positrons in tokamaks can drift out of

the plasma to hit the wall before annihilation within the

plasma. If the safety factor q¼ q(R, z) is a function of the

spatial coordinates like in real tokamaks, the drift velocity

will explicitly depend on the spatial location. However, the

space-dependent safety factor also leads to similar runaway

positron dynamics and the same main conclusions as the

constant-q assumption. For situations with larger loop elec-

tric field, the runaway positrons will drift faster. If the helical

direction of the magnetic field or the direction of the loop

electric field are changed, the positron will drift inwards, i.e.,

towards the negative êR direction, to hit the inner wall. It is

observed that the radius of circular orbit varies as the posi-

tron drifts along the êR direction, especially in the later stage.

As mentioned previously, the neoclassical orbit loss is just

one of many loss mechanisms for positrons. Since other loss

mechanisms23–25,28,35–37 are in general faster, the in-plasma

annihilation probability observed in experiments should be

even less. Finally, because the orbit drift does not depend on

the electric charge, note that runaway electrons, which will

have their own signature (like visible damage to the wall),

will strike exactly on the same side of the vacuum vessel.

Early in 1986, Surko et al. proposed to diagnose the

transport process by injecting positrons into tokamaks.38 The

annihilation spectrum of positrons in thermal plasmas was

also studied.39 Now it is clear that the large amounts of posi-

trons produced by tokamaks themselves can be used as a diag-

nostic tool as well. Since most of the positrons are annihilated

outside the plasma, the positron diagnostic in tokamaks cannot

detect plasma properties directly as in PET (Positron

Emission Tomography).1 However, positron diagnostic is still

possible using our knowledge of the dynamics of the runaway

positrons. The annihilation spectrum, which can be recorded

by the gamma spectrometer, is very characteristic and easily

identifiable. The intensity, breadth, and shift of the annihila-

tion peak in the spectrum reflect the properties of the plasma

that determines the runaway dynamics. Moreover, the time

history of the positron annihilation is also an important indica-

tion to some events in tokamaks, such as a disruption or rf

heating, which produces a burst of positron runaways at a spe-

cific time. The annihilation locations on the first wall and the

emission directions of the gamma ray provide information

FIG. 3. Snapshots, taken for every 0.03 s, of the circular orbit of a runaway

positron in the poloidal plane, with initial position R�R0¼ 0.1 m, z¼ 0 m and

initial momenta pk¼ 5mec and p?¼mec. The loop electric field is El¼ 5 V/m.

The position of the first wall is indicated by the dashed vertical line.
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about the phase space coordinates of the runaway positrons at

the end of their journey, from which we can also infer the tra-

jectories of runaway electrons in the phase space. Theoretical

and experimental studies on these topics will be reported in

future publications.
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